개수

    소인수분해로 약수의 개수 구하는 문제 풀이

    1. 1500의 약수는 몇 개인지 소인수분해를 활용해서 구하시오1500을 소인수분해 하면 2^2 * 3 * 5^3이 된다, 그리고 각각의 거듭제곱에 +1을 해주고 서로 곱해주면 (2+1) * (1+1) * (3+1) = 24가 나온다.  2. 다음 중 약수의 개수가 다른 하나를 구하시오 거듭제곱을 파악해서 약수의 개수를 구해보면 아래와 같은데, 3번은 약수가 24개이다  3. 56 * 3^a의 약수가 32개일 때, a의 값을 구하시오먼저 56×3a을 소인수분해하면 23×3a×7이 된다. 그럼 약수의 개수가 32개이므로, (3+1)×(a+1)×(1+1)=32라는 것을 알 수 있다. 그래서 a=3이다.  https://math100.tistory.com/132

    소인수분해로 약수의 개수 구하는 법

    소인수분해와 약수 간에도 규칙이 하나가 있어 거듭제곱 숫자에 +1을 하면 약수의 개수가 된다, 예를 들어 8을 소인수분해하면 2^3 이 나오는데, 거듭제곱인 3에 +1을 하면 4이므로 약수 4개다. 그러면 숫자 512의 약수의 개수는 소인수분해하면 2^9이 나오므로, 거듭제곱 9에 +1을 하면 10개다. 그런데 소인수분해를 해보면, 거듭제곱이 2개인 경우도 있다. 예를 들어 72를 소인수분해하면 2^3 * 3^2로 2개나 된다. 하지만 이런 경우에도 각각의 거듭제곱에 +1을 한 다음 서로 곱해주면 된다, 그래서 (3+1) * (2+1) = 12가 나오므로 12개다. 마찬가지로 거듭제곱이 3개 이상인 경우에도 동일하다. 예를 들어 1800을 소인수분해하면 2^3 * 3^2 * 5^2로 거듭제곱이 3개나 되..